Resveratrol as an anti-asthmatic agent: could this stilbenoid help against COVID-19 in any way? A meta-analysis

Ali Parlar¹, Amner Muñoz-Acevedo², Fatih Üçkardes³, Luisauris Jaimes⁴, Ina Aneva⁵, Bernardo Morales⁴, Amina Unis⁶⁷, Maite Rodríguez⁸, Onder Yumrutas⁹, Raúl Vinet⁹, Simona Bungau¹⁰ & José L. Martínez¹¹

¹Department of Pharmacology, Faculty of Medical, University of Adyaman, Adyaman, Turkey
²Department of Chemistry and Biology, Universidad del Norte, Barranquilla, Colombia
³Department of Biostatistics, Faculty of Medicine, Adyaman University, Adyaman, Turkey
⁴Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
⁵Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
⁶Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, UAE
⁷Faculty of Medicine, University of Alexandria, Egypt
⁸School of Chemistry and Pharmacy, Faculty of Medicine, Andrés Bello University, Santiago, Chile
⁹Laboratory of Pharmacology, Faculty of Pharmacy, Universidad de Valparaíso, Valparaíso, Chile
¹⁰Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
¹¹Vice Rectorcy of Investigation, Development and Innovation, Universidad de Santiago de Chile, Santiago, Chile

Abstract: Resveratrol is a phenolic phytoconstituent found in many plants. This molecule has always caught the attention of scientists because of biological potentials such as inhibition of inflammation, oxidative stress and platelet aggregation as well as to prevent/protect against cardiovascular and neurodegenerative diseases/disorders. Literature search have been conducted over resveratrol in covid-19 and asthma studies published in Pubmed and Google Scholars until 30 September 2020. The criteria used in the literature review were determined and were reviewed works on resveratrol including 368 articles and 47 articles on covid-19 and asthma, respectively. As a result of meta-analysis, TNF-α values of the studies showed a significant difference (heterogeneity) of I²=68.39% from each other in total (Cohran Q: 6.33, p<0.0423). This study shows that resveratrol would have a potential to reduce ARDS symptoms, by suppressing the cytokine storm and severe inflammation caused by SARS-CoV-2, and by showing strong activity against various types of DNA/RNA viruses.

Keywords: Resveratrol; COVID-19; Asthma; Novel coronavirus; Meta analysis.

Resumen: El resveratrol es un fitoconstituyente fenólico que se encuentra en muchas plantas. Esta molécula siempre ha llamado la atención de los científicos debido a sus potenciales biológicos como la inhibición de la inflamación, el estrés oxidativo y la agregación plaquetaria, así como para prevenir/proteger contra enfermedades/trastornos cardiovasculares y neurodegenerativos. Se han realizado búsquedas bibliográficas sobre resveratrol en covid-19 y estudios sobre asma publicados en Pubmed y Google Scholars hasta el 30 de septiembre de 2020. Se determinaron los criterios utilizados en la revisión bibliográfica y se revisaron trabajos sobre resveratrol que incluyen 368 artículos y 47 artículos sobre covid-19 y asma, respectivamente. Como resultado del metanálisis, los valores de TNF-α de los estudios mostraron una diferencia significativa (heterogeneidad) de I²=68.39% entre sí en total (Cohran Q: 6.33, p<0.0423). Este estudio muestra que el resveratrol podría reducir los síntomas del ARDS al suprimir la tormenta de citocinas y la inflamación severa causada por el SARS-CoV-2, y al mostrar una fuerte actividad contra varios tipos de virus de ADN/ARN.

Palabras clave: Resveratrol; COVID-19; Asma; Nuevo coronavirus; Metaanálisis.

Accepted corrected: 1 March 2021
Published: 30 September 2021

Reviewed by: Arnaldo Bandoni
Universidad de Buenos Aires
Argentina

Aurelio San-Martín
Universidad de Magallanes
Chile

Correspondence: José L. MARTÍNEZ
joseh.martinez@usach.cl

Section: Review

Received: 10 January 2021
Accepted: 9 February 2021
Accepted corrected: 1 March 2021
Published: 30 September 2021

Coronavirus, and since early 2020, it has broadcast. Asthma is characterized. 2018, 2017; Parlar et al.

INTRODUCTION

Traditional herbal medicines from which mankind has taken benefits since ancient times, remain in force and are increasingly popular despite the advancement and development of modern medicine. One of the reasons for its high acceptability is related to the fact that people are looking for other/new/novel alternatives (environmentally friendly) for the treatment of both physical diseases and psychological disorders, due to the unwanted side effects of some, as well as how affordable and accessible these drugs are (Hodgson, 2015).

Many phytochemicals (e.g., polyphenols) ingested through the diet can act as nutraceuticals, decreasing the risk or preventing the progression of certain diseases including respiratory (e.g., asthma). Among these phytocomponents, resveratrol, a natural phenolic stilbene (C₆-C₂-C₆ scaffold), found in many fruits such as grapes, peanuts (Chang et al., 2006), blackcurrant, raspberry, cranberry, chokeberry, blackberry (Lin et al., 2017; Kim, 2018) and vegetables (Martinez et al., 2020), plays an important role as a therapeutic and chemopreventive agent in the treatment of various diseases; it was first isolated from Veratrnum grandiflorum in 1940, and later it was also identified in a traditional Japanese and Chinese medicine called Ko-jo-kon (Polygonum cuspidatum) (Takaoka, 1940).

Although many modern medications (e.g., anticholinergics, β-adrenergic agonists, steroids, antihistamines, antileukotrienes, and phosphodiesterase inhibitors) through direct therapy are used to treat asthma to date, a significant number of patients experience repeated asthmatic attacks (Janssen & Killian, 2006). In addition, long-term and excessive use of some of these drugs, especially nonsteroidal anti-inflammatory drugs (NSAID) and corticosteroids, can cause undesirable side effects such as gastrointestinal toxicity, addiction, drug resistance, and induction of Cushing’s syndrome (Hodgson, 2015), which would limit the use of current therapies in related patients, and accordingly, new therapeutic agents are needed that target both inflammation and pathways of airway smooth muscle contraction (Fanta, 2009; Lam et al., 2018). In this sense, use of active ingredients (e.g., shikimic acid) from plants (Illicium verum, I. religiosum - star anise) to obtain intermediates/pro-drugs/drugs (oseltamivir - Tamiflu®) for the treatment of respiratory diseases (e.g., H1N1 influenza, avian flu, influenza types A/B) (Alhajj et al., 2020; Singh et al., 2020) has become a valuable alternative for pharmaceutical companies, due to both its high effectiveness and relatively few side effects.

Since the first outbreak reported in the Chinese city of Wuhan in December 2019, the world has witnessed the pandemic spread of the recently identified SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2, related to a β-coronavirus), which is responsible for coronavirus disease 2019 (COVID-19) (Fei et al., 2020; Lu et al., 2020; Zhu et al., 2020), and since early 2020, it has broadcast rapidly in Europe first and later in America to date, causing approximately 400 thousand deaths and 6.5 million infections, according to reports (June 2020) from Johns Hopkins University and the European Centre for Disease Prevention and Control (Thiery, 2020). The new coronavirus pandemic is a major challenge to health systems worldwide, with 144.5 million people infected and almost 3.100.000 deaths (as of April 21, 2021) (Worldometer, 2021). The most common mode of SARS-CoV-2 transmission is from human to human through respiratory droplets or direct contact, having an average incubation period of 5.1 days and an estimated basic reproduction number of 2.24-3.58 per each infected individual (Jackowska et al., 2020; Rajwa et al., 2020).

On the other hand, referring to asthma as a respiratory disorder, this is a chronic inflammatory disease that affects more than 300 million people in the world and its prevalence has continuously increased; children are the group with the highest percentage of the disease compared to the other age groups (Kudo et al., 2013). Asthma is characterized by airway inflammation, hyper responsiveness, and reversible airflow obstruction (D’Amato et al., 2016);
it also produces symptoms of chest tightness, wheezing, and cough (Zhai et al., 2018). The pathogenesis of asthma is very complex due to various factors such as cytokines (e.g., interleukins, chemokines), growth factors, reactive oxygen species, inflammatory and T cells (e.g, eosinophils, lymphocytes, neutrophils) (Parlar et al., 2008).

MATERIAL AND METHODS
This meta-analysis, Systematic Reviews, was conducted on the model of the Preferred Reporting Elements for Meta-Analyses (PRISMA) statement by Liberati et al. (2009).

Search strategy
The words "Resveratrol", "Sars", "Asthma" and "Covid-19" were searched separately in Scopus, MEDLINE/Pubmed and Google Scholar (Up to September 10, 2020). The research was limited to English-language, human and animal studies, and reviews, including clinical studies only. The "criteria for inclusion" included randomized, controlled trials comparing only different interventions with key words. If other interventions were given, it was considered that they should be the same in all treatment groups. Also, only articles published in peer-reviewed journals Iran J Pharm Res. Chin J Pharmaceut Anal Med Plant Commun and some others were included in this study. Since covid-19 is so new, the resveratrol literature search was conducted independently of covid-19, while a literature search was performed together with asthma-covid19 and asthma-resveratrol. see fonts The reference list was designed using the "Mendeley" program.

Data extraction
All articles to be accepted as reference were reviewed by all authors. Articles for which double-blind peer-review was not evaluated were excluded. Extracted data included information about the study design, characteristics, amount of resveratrol, other compounds, the ratio of resveratrol to other compounds. For meta-analysis, articles measuring the level of TNF-α were searched.

Statistical analysis
Data tables were created after all the combined literature was carefully read and the data were extracted according to the requirements of the meta-analysis. Further analysis GraphPad Prism 7.01 (San Diego, CA 92108) was used and p values less than 0.05 were considered significant.

Meta-analysis was performed using MedCalc 19.5.3. MedCalc uses the Hedges g statistic as a formulation for the standardized mean difference under the fixed effects model. Next the heterogeneity statistic is incorporated to calculate the summary standardized mean difference under the random effects model.

RESULTS
As a result of the literature search about "resveratrol" as described above, 13,571 and 37,000 articles were found in pubmed and google scholar respectively. Moreover, as a result of the search for the keywords "asthma" together with "resveratrol" in the same databases, 47 and 17,700 articles were found respectively. The keyword "covid-19" reached 58,155 and 1,320,000 results, respectively. However, as a result of searching these three main words together, no articles were found. As illustrated in Figure No. 1, only 47 studies were found to investigate the relationship between resveratrol and asthma patients' outcomes.

In the articles related to asthma and resveratrol, 5 articles examining the level of TNF-alpha were reviewed. Accordingly, the statistical data of the test are given in Figure No. 2.

As a result of the meta-analysis, it was found that the heterogeneity of the TNF-α values of the studies was significant (Cochran Q: 6.33, p<0.0423) and the degree of heterogeneity was I² = 68.39 %. The results of these studies differ from each other by a total of 68.39%.

The phenol resveratrol (3,4',5-trihydroxy-trans-stilbene, 5-[(1E)-2-(4-hydroxyphenyl) ethenyl]-1,3-benzenediol - Figure No. 3a) is a phytoalexin biosynthesized in plant sources against causing-disease or damage/stress agents; this molecule occurs in two isomeric forms (E and Z) along with its glycosylated derivatives [E/-Z-piceid (E/-Z-resveratrol-3-O-β-d-glucopyranoside) - Figure No. 3b] and it is also a powerful antioxidant. Many studies have been conducted documented in cell and animal trials on resveratrol and its ability to prevent cardiovascular diseases (Jang et al., 1997; Sahebkar et al., 2015) and cancer (Carbó et al., 1999; Parlar & Arslan, 2019), along with its potential to reduce inflammation (Guzman et al., 2018), inhibit high glucose-induced cell damage (Hu et al., 2016), inhibit antioxidant capacity (Guzman et al., 2018; Muñoz et al., 2020), inhibit the oxidation of low-density lipoproteins, inhibit platelet aggregation (Frémont et
Procted against neurodegenerative disorders (Pourhanifeh et al., 2019), decreasing cardiometabolic risk factors (Stivala et al., 2001) and even prolong life (McMichael et al., 2020).

Covid-19 is the most serious disease that has affected the planet almost completely (Guo et al., 2017), and it is well known that all coronaviruses affect the respiratory system; nevertheless, SARS-CoV-2 adheres more efficiently to the lower airways (e.g., bronchi, lungs, bronchioles, alveoli) than other coronaviruses (Sarzi-Puttini et al., 2020), causing eventually severe respiratory failure and acute respiratory distress syndrome (ARDS) in some patients with comorbidities (e.g., hypertension, diabetes, immunosuppressed) (Guo et al., 2020; Reiner et al., 2020). Into the bargain, this coronavirus can cause serious cardiovascular and liver problems (Banach et al., 2020; South et al., 2020).

Figure No. 1

Article selection process

Figure No. 2

Meta-analyses of three case-control studies relating TNF alpha. Summary compare means calculated by random and fixed effects method. Heterogeneity: $Q=6.33, p<0.0423, I^2=68.39\%, 95\%$ CI for $= 0.00$ to 90.82

(André et al., 2016; Fan et al., 2019; Jiang et al., 2019)
This new pandemic is a great challenge for health systems worldwide (Worldometer, 2020). In all countries, the treatment of patients affected by COVID-19 has been prioritized, and all resources have been focused on finding and/or expanding more clinical resources to serve the population where the increase in Covid-19 cases seems to go hand in hand with falling temperatures. Ways to prevent and/or delay the progress of infections have been established/assumed differently by each country. In this way, local decrees have arisen in the countries themselves as well as other more specialized documents for large groups (Cunningham et al., 2020).

While big pharmaceutical companies/laboratories around the world are searching for new drugs that can directly or indirectly combat Covid-19, comorbidities such as hypertension, diabetes and respiratory disorders (such as asthma), among others, in patients with Covid-19 would rapidly increase their critical states to impending doom (Tian & Liu, 2020).

The purpose of this review is to report how the phytoconstituent resveratrol has been effective against asthma and thus, hypothetically it could have an impact on the decrease of comorbidity (asthma) in patients with Covid-19 and therefore, an improvement in life expectancy of critically ill patients. The manuscript will mention the effect of resveratrol and its mechanism of action on asthma.

Plants containing resveratrol

Some plants containing resveratrol are included in Table No. 1. Thus, 111 species belonging to 71 genera and 34 families have been included in this Table No. 1.
Table No. 1

<table>
<thead>
<tr>
<th>Study</th>
<th>Research type</th>
<th>measurement method</th>
<th>Quantification of resveratrol</th>
<th>Family</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Da Silva et al., 2014</td>
<td>Chemical research</td>
<td>Chemical analysis</td>
<td>0.56 x 10^{-2} ng/mL</td>
<td>Bromeliaceae</td>
<td>Ananas comosus (L) Merr.</td>
</tr>
<tr>
<td>Suzuki et al., 1987</td>
<td>Chemical research</td>
<td>Spectroscopic analysis</td>
<td>--</td>
<td>Cyperaceae</td>
<td>Carex fedia var. miyabei (Franchet) T. Koyama</td>
</tr>
<tr>
<td>Ito et al., 2003</td>
<td>Chemical research</td>
<td>Spectroscopic analysis</td>
<td>--</td>
<td>Dipterocarpaceae</td>
<td>Vatica pauciflora (Korth.) Bl.</td>
</tr>
<tr>
<td>Lyons et al., 2003</td>
<td>Chemical research</td>
<td>LC-MS/MS</td>
<td>36 ng/g</td>
<td>Ericaceae</td>
<td>Vaccinium myrtillus Linn.</td>
</tr>
<tr>
<td>Rimando & Barney, 2005</td>
<td>Chemical research</td>
<td>GC/MS</td>
<td>0.26-4.67 µg/g</td>
<td>Ericaceae</td>
<td>Vaccinium haitangense Sleumer</td>
</tr>
<tr>
<td>Borowska et al., 2009</td>
<td>Chemical research</td>
<td>HPLC</td>
<td>712.3 ng/g</td>
<td>Ericaceae</td>
<td>Vaccinium microcarpum (Turcz. ex Rupr.) Schmalh.</td>
</tr>
<tr>
<td>Česoniene & Daubaras, 2015</td>
<td>Chemical research</td>
<td>HPLC</td>
<td>533.4 ng/g</td>
<td>Ericaceae</td>
<td>Vaccinium oxycoccos Linn.</td>
</tr>
<tr>
<td>Tanaka et al., 2001</td>
<td>Chemical research</td>
<td>Spectroscopic analysis</td>
<td>429.6 ng/g</td>
<td>Gnetaceae</td>
<td>Gnetum parvifolium (Warb.) C. Y. Cheng ex Chun</td>
</tr>
<tr>
<td>Xiang et al., 2002</td>
<td>Chemical research</td>
<td>chromatography</td>
<td>16.3 ng/g</td>
<td>Gnetaceae</td>
<td>Gnetum montanum Markgr</td>
</tr>
<tr>
<td>Huang et al., 2000</td>
<td>Chemical research</td>
<td>UV spectra</td>
<td>161.7 ng/g</td>
<td>Gnetaceae</td>
<td>Gnetum hainanense C. Y. Cheng</td>
</tr>
<tr>
<td>Powell et al., 1994</td>
<td>Chemical research</td>
<td>GC/MS</td>
<td>2300 ppm</td>
<td>Poaceae</td>
<td>Lolium perenne L.</td>
</tr>
<tr>
<td>Study</td>
<td>Type</td>
<td>Method</td>
<td>Value</td>
<td>Family</td>
<td>Species</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------------</td>
<td>----------------------------</td>
<td>---------------------------</td>
<td>--------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Ehala et al., 2005</td>
<td>Chemical research</td>
<td>capillary zone electrophoresis</td>
<td>97.8%</td>
<td>Grossulariaceae</td>
<td>Ribes nigrum L.</td>
</tr>
<tr>
<td>Muangthai & Sutiono, 2014</td>
<td>Chemical research</td>
<td>HPLC</td>
<td>76.82 g/L</td>
<td>Lauraceae</td>
<td>Cinamomum spp.</td>
</tr>
<tr>
<td>Irimidayanti et al., 2019</td>
<td>Chemical research</td>
<td>TLC, HPLC</td>
<td>65.15-55.35 %</td>
<td>Fabaceae</td>
<td>Glycine max (Linn.) Merr.</td>
</tr>
<tr>
<td>Anjaneyula et al., 1984</td>
<td>Chemical research</td>
<td>X-rays</td>
<td>6.79-2H, d, J=8Hz</td>
<td>Bauhinia racemosa Lam.</td>
<td></td>
</tr>
<tr>
<td>Chukwumah et al., 2009</td>
<td>Chemical research</td>
<td>HPLC</td>
<td>9.49 mg/mL</td>
<td>Arachis hypogaea Linn.</td>
<td></td>
</tr>
<tr>
<td>Liu et al., 2004</td>
<td>Chemical research</td>
<td>X-rays</td>
<td>6.33 (1H, d, J2.5 Hz) this is not a quantification!</td>
<td>Caragana stenophylla Pojark.</td>
<td></td>
</tr>
<tr>
<td>Kineman et al., 2010</td>
<td>Chemical research</td>
<td>HPLC</td>
<td>0.1 ± 0.08 nmol/g tissue</td>
<td>Medicago sativa L.</td>
<td></td>
</tr>
<tr>
<td>Tian et al., 2008</td>
<td>Chemical research</td>
<td>X-rays</td>
<td>7.46 (dd, J ¼ 6.5, 2.0 Hz, 2 H)</td>
<td>Ammopiptanthus mongolicus (Maxim. ex Kom.) Cheng f.</td>
<td></td>
</tr>
<tr>
<td>Ning et al., 2013</td>
<td>Chemical research</td>
<td>HPLC</td>
<td>62.89 g/L</td>
<td>Vigna umbellata (Thunb.) Ohwi et Ohashi</td>
<td></td>
</tr>
<tr>
<td>Takaoka, 1940</td>
<td>Review</td>
<td>--</td>
<td>--</td>
<td>Veratrum grandiflorum (Maxim.) Loes. f</td>
<td></td>
</tr>
<tr>
<td>Zhao et al., 1998</td>
<td>Review</td>
<td>--</td>
<td>--</td>
<td>Veratrum nigrum L. var. ussuriense Nakai</td>
<td></td>
</tr>
<tr>
<td>Zhou et al., 1999</td>
<td>Chemical research</td>
<td>Enzyme assay</td>
<td>30 µM</td>
<td>Veratrum taliense Loes. f</td>
<td></td>
</tr>
<tr>
<td>Wu et al., 2018</td>
<td>Chemical research</td>
<td>HPLC</td>
<td>0.478 mg/g</td>
<td>Veratrum maackii Regel</td>
<td></td>
</tr>
<tr>
<td>Yuan et al., 2018</td>
<td>Chemical research</td>
<td>HPLC</td>
<td>0.549 mg/g</td>
<td>Ornithogalum caudatum Jacq</td>
<td></td>
</tr>
<tr>
<td>Wang et al., 2013</td>
<td>Abstract</td>
<td>Chromatography</td>
<td></td>
<td>Smilax scobinicaulis C. H. Wright</td>
<td></td>
</tr>
<tr>
<td>Li et al., 2007</td>
<td>Chemical research</td>
<td>HPLC</td>
<td>0.288 mg/mL</td>
<td>Smilax glabra Roxb</td>
<td></td>
</tr>
<tr>
<td>Shu et al., 2002</td>
<td>Chemical structure</td>
<td>Ultraviolet spectra</td>
<td>7.65, d, J=15.9 Hz</td>
<td>Smilax bracteata Presl</td>
<td></td>
</tr>
<tr>
<td>Sagar et al., 2006</td>
<td>Chemical research</td>
<td>HPLC</td>
<td>20%</td>
<td>Magnoliaceae</td>
<td>Magnolia officinalis Rehd. et Wils.</td>
</tr>
<tr>
<td>Xu et al., 2004</td>
<td>Chemical structure</td>
<td>Ultraviolet spectra</td>
<td>1H, d, J=1.5 Hz, H-6</td>
<td>Myrcinaceae</td>
<td>Aegiceras corniculatum (Linn.) Blanco</td>
</tr>
<tr>
<td>Rajkumari et al., 2018</td>
<td>Animal research</td>
<td>Anti-oxidant activity</td>
<td>8000 IU</td>
<td>Syzygium jambos (L.) Alston</td>
<td></td>
</tr>
<tr>
<td>Hillis & Inoue, 1967</td>
<td>Chemical structure</td>
<td>HPLC</td>
<td>62.1 %</td>
<td>Nothofagaceae</td>
<td>Nothofagus fusca Hook.f.</td>
</tr>
<tr>
<td>Li et al., 2009</td>
<td>Chemical structure</td>
<td>MS/MS</td>
<td>0.529.6 mg/g</td>
<td>Pinus sylvestris L.</td>
<td></td>
</tr>
<tr>
<td>Author(s)</td>
<td>Year</td>
<td>Methodology</td>
<td>Technique</td>
<td>Concentration</td>
<td>Species</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------------</td>
<td>---------</td>
</tr>
<tr>
<td>Lee et al., 2016</td>
<td>Chemical structure</td>
<td>HPLC</td>
<td>0.322 mg/mL</td>
<td>Pinus koraiensis Sieb. et Zucc.</td>
<td></td>
</tr>
<tr>
<td>Aritomi et al., 1965</td>
<td>Chemical research</td>
<td>UV spectra</td>
<td>--</td>
<td>Rumex japonicus Houtt.</td>
<td></td>
</tr>
<tr>
<td>Kim et al., 2002</td>
<td>Chemical research</td>
<td>HPLC</td>
<td>59 mg/0.18 g</td>
<td>Ranunculaceae Paeonia suffruticosa Andr.</td>
<td></td>
</tr>
<tr>
<td>Sarker et al., 1999</td>
<td>Chemical research</td>
<td>HPLC</td>
<td>ED$_{50}$ = 10 to 50 μM vs. 5 × 10$^{-8}$M 20-hydroxyecdysone</td>
<td>Paeonia suffruticosa (Andr.) Kerner</td>
<td></td>
</tr>
<tr>
<td>Yu et al., 2019</td>
<td>Review</td>
<td>--</td>
<td>--</td>
<td>Rosaceae Rubus chingii Hu</td>
<td></td>
</tr>
<tr>
<td>Gadani et al., 2017</td>
<td>Animal research</td>
<td>Antioxidants activity</td>
<td>51.0 ± 7.6 vs 29.6 ± 11.3 μM</td>
<td>Theaceae Camellia sinensis (L.) Kuntze</td>
<td></td>
</tr>
<tr>
<td>Soural et al., 2015</td>
<td>Chemical research</td>
<td>LC/MS</td>
<td>6030 ± 680 μg/g</td>
<td>Vitaceae Vitis vinifera L.</td>
<td></td>
</tr>
<tr>
<td>Ji et al., 2014</td>
<td>Chemical research</td>
<td>HPLC</td>
<td>0.009 μg/mL</td>
<td>Vitaceae Vitis amurensis Rupr.</td>
<td></td>
</tr>
<tr>
<td>Kim et al., 2007</td>
<td>Chemical research</td>
<td>HPLC</td>
<td>5.2 mg/500 mg</td>
<td>Ampelopsis japonica (Thunb.) Makino</td>
<td></td>
</tr>
<tr>
<td>Adesanya et al., 1999</td>
<td>Chemical structure</td>
<td>UV spectra</td>
<td>6.21, 2H, d, J=2 Hz</td>
<td>Cissus quadrangularis L.</td>
<td></td>
</tr>
<tr>
<td>Lins et al., 1991</td>
<td>Chemical structure</td>
<td>UV spectra</td>
<td>7.30, 3H, d, J=8.5 Hz</td>
<td>Parthenocissus tricuspidata (S. et Z.) Planch.</td>
<td></td>
</tr>
<tr>
<td>Tanaka et al., 1998</td>
<td>Chemical structure</td>
<td>UV spectra</td>
<td>1H, d, J = 2.0 Hz</td>
<td>Parthenocissus quinquefolia (L.) Planch.</td>
<td></td>
</tr>
<tr>
<td>Syah et al., 2000</td>
<td>Chemical structure</td>
<td>UV spectra</td>
<td>7.23 1H, d, J=16.4 Hz</td>
<td>Morus macroura Miq.</td>
<td></td>
</tr>
<tr>
<td>Choi et al., 2013</td>
<td>Chemical research</td>
<td>NMR spectral analysis</td>
<td>23.7 to 105.5 mg % in six different mulberry cultivars.</td>
<td>Morus alba L.</td>
<td></td>
</tr>
<tr>
<td>Abbas et al., 2014</td>
<td>Chemical structure</td>
<td>NMR spectral analysis</td>
<td>2H, d, J=2.0 Hz.</td>
<td>Morus nigra L.</td>
<td></td>
</tr>
<tr>
<td>Chen et al., 2015</td>
<td>Chemical structure</td>
<td>CD spectra</td>
<td>6.30 (1H, dd, J=8.0, 2.0 Hz, H-8</td>
<td>Cudrania cochinchinensis Lour.</td>
<td></td>
</tr>
<tr>
<td>Borah et al., 2017</td>
<td>Ultraviolet-visible</td>
<td>85.00 mg/kg</td>
<td>--</td>
<td>Artocarpus lakoocha Roxb.</td>
<td></td>
</tr>
</tbody>
</table>
Asthma
Asthma is a reversible airway obstruction that increases sensitivity in the lungs, mucus production, and inflammation in the airway (James et al., 2009). It includes pathophysiological condition, epithelial fibrosis, metaplasia and hyperplasia of goblet cells, hypersecretion of mucus (Shinagawa & Kojima, 2003). Asthma is a disease with different phenotypes but does not have a standard way of defining them (Wenzel, 2006), and to determine them not only are the clinical parameters sufficient, but other biomarkers are also needed to find genetic/phenotypic differences (Hesselmar et al., 2012). In establishing the specific phenotypes of asthma, several particular models of asthma have been suggested and demonstrated in animal models.

DISCUSSION
This work is a review that seeks to correlate the therapeutic effects of resveratrol and certain plants containing it against some respiratory diseases such as ARDS and asthma, which are caused by many pathogens, including SARS-CoV-2, as well as provides information to researchers in these areas.

Isolation of viruses from the upper airway of asthmatic patients during clinical exacerbations suggested that viruses may play an important role in asthma (Johnston et al., 1995), and therefore, they are common triggers for these exacerbations (Kumar et al., 2020). In most people with asthma, Th2 mediators increase, as well as when a viral infection arises (Contoli et al., 2006); such Th2 mediators like IL-4 and IL-13 can inhibit epithelial production of type I interferon (Contoli et al., 2015). Furthermore, interferon α can suppress the polarization of Th2 cells in T cells and, consequently, can attenuate the expression of GATA3, IL-4 and IL-5 (Huber et al., 2010; Pritchard et al., 2012). Evidence for this is that type 2 inflammation occurs in mice with type I IFN receptor deficiency in response to pulmonary eosinophilia and influenza infection in mice (Duerr et al., 2016). Additionally, the results of a series of previous in vitro and in vivo studies in humans and animals for various asthma-related viruses, e.g., rhinovirus, influenza, and respiratory syncytial virus, promote this hypothesis (Chen et al., 2019; Han et al., 2019; Lee et al., 2019).

Previous studies on T-cell lymphotrophic virus 1 (HIV-1) showed that resveratrol led to the activation of the lytic cycle of HIV-1, attenuation of the HIV-1 Tat-induced long terminal repeat (LTR) transactivation and inhibition of HIV-1 replication when used synergistically with nucleoside analogues by activating the early growth response gene product 1 (EGR-1) and sirtuin 1 and prolonging the S-phase of the cell cycle, respectively (Heredia et al., 2000; Krishnan & Zeichner, 2004; Wang et al., 2004; Zhang et al., 2009). In addition, Faith et al. (2006) and Docherty et al. (2006) demonstrated that resveratrol, by suppressing activation of the NF-κB pathway, inhibited the replication of varicella-zoster virus (VZV) and herpes simplex virus 1 and 2 (HSV-1 and HSV-2). Similarly, Palamara et al. (2005), established (both in vivo and in vitro assays) that resveratrol inhibited the replication of influenza A virus by causing inhibition of protein kinase C activity.

SARS-CoV-2 binds to respiratory epithelial cells via angiotensin-converting enzyme 2 (ACE2) (Kim et al., 2020) and the virus links to the host serine protease TMPRSS2, which cleaves the viral spike protein in S1/S2 allowing the fusion of viral and cell membranes (Hoffmann et al., 2020). In a study investigating the in vitro and in vivo translation and budding process of SARS-CoV-1 and MERS viruses, the infection caused by SARS-CoV-1 can be detected by various intercellular sensors (e.g., RIG I/MDA5/MAVS/TRAF3/IRF3/IRF7) and pathways (e.g., TLRs/TRIF/MyD88/IKKb/NF-κB/MAPK/AP-1). Thus, the blocking of the IRF3 and RIG I pathways by the SARS virus produces the inhibition of the antiviral response and the inefficient production of type I interferons (Siu et al., 2009). As a result of all this process, cell death can lead to increased hyperinflation and cytokine storm.

IL-1β and IL-18, which cause exacerbation of symptoms of SARS-CoV-2 infection, are generated by NF-κB pathway; these proinflammatory cytokines play a role in pathogenic inflammation and are activated through the detection of viral RNA using toll-like receptors (e.g., TLR-3, TLR7, TLR8 and TLR9) (Conti et al., 2020). Based on the report by Wang et al. (2020b), SARS-CoV-2 infects human T cell lines in a new way from the CD147 spike protein located on the surface of T lymphocytes.

The excess immune response caused by COVID-19, especially in the airway mucosa, can be suppressed by Treg cells (Loebbermann et al., 2013). While eosinophils, which contain and produce molecules with antiviral activity, serve as antigen-presenting cells as demonstrated in vitro and in vivo against some respiratory viruses, including respiratory syncytial virus and influenza (Flores-Torres et al., 2019).
The vast majority of patients with COVID-19 survive the disease without symptoms, while some of them with mild to moderate symptoms recover within a week (Dong et al., 2020; Huang et al., 2020). Nonetheless, some patients develop severe pneumonia in the second week, followed by excessive cytokine storm, acute respiratory distress syndrome, multiple organ dysfunction disorder, and disseminated intravascular coagulation in the third week (Azkur et al., 2020). Referring to the cytokine storm, it is a process characterized by the activation of large numbers of white blood cells, such as monocytes, neutrophils, macrophages, and NK, B and T cells, as well as the release of great amounts of pro-inflammatory cytokines (Behrens & Koretzky, 2017; Zinovkin & Grebenchikov, 2020). Among the causes of cytokine storm, cases such as Ebola, bacterial sepsis and other hemorrhagic fevers could be tied to some infectious and non-communicable diseases (e.g., flu and blunt trauma) (Liu et al., 2016; Channappanavar & Perlman, 2017; Younan et al., 2017).

According to Lo Muzio et al. (2020), reported that natural purified polyphenols prevented pneumonitis caused by coronavirus. In another study conducted by Marinella (2020), showed that two potential anti-inflammatory agents include indomethacin, which has been shown in experimental models to decrease canine coronavirus levels in dogs and exhibit antiviral activity against several other viruses and the polyphenol, resveratrol, a potent antioxidant that has shown antiviral activity against several viruses.

According to Dennis and Norris (2015), the proinflammatory cytokines and eicosanoids play a key role in the inflammatory process caused by SARS-CoV-2, in the same way as TNF-α, IL-6, IL-12, IL-17, IL-1β, and IFN-γ (Chousterman et al., 2017). Meanwhile, IL-10 limits the expansion of tissue lesions in experimental models (Savarin & Bergmann, 2018; Ashrafizadeh et al., 2020). Considering as described by Huang et al. (2005), high levels of monokine were detected in the serum of patients with SARS in the acute phase, and these monokines are induced by IL-6, IL-8, IL-18, interferon-γ-inducible protein-10 (CXCL10 or IP-10), macrophage chemoattractant protein-1 (MCP-1), IFN-γ, and TGF-β (Huang et al., 2005; Savarin & Bergmann, 2018).

Another important feature of asthma is airway hyperresponsiveness (AHR), and it was evaluated by Parlar and Arslan using unrestrained whole-body plethysmography, which is a method that can detect breathing patterns (Parlar & Arslan, 2020). Furthermore, in human studies, SARS is known to cause acute inflammatory lung injury, characterized by bilateral alveolar opacities and decreased pulmonary compliance with acute hypoxemic respiratory failure on chest X-ray (Peiris et al., 2003; Fan et al., 2018). ARDS develops in patients within 3 weeks after SARS infection, whereas ARDS progresses in COVID-19 patients between 8-9 days after disease onset (Huang et al., 2020). Reports show that some diseases and factors such as bronchitis, diabetes, Parkinson’s disease, ischemic disease of the central nervous system, hypertension, and coronary artery disease increase the severity of ARDS caused by SARS-CoV-2 and even cause the death of patients (Wujtewicz et al., 2020).

Since some herbal medicines suppress type 2 inflammation (Lee et al., 2018), resveratrol can lead to the beneficial effect of secondary restoration of impaired antiviral immunity in the exacerbation related to SARS-CoV-2 (Lin et al., 2017; Filardo et al., 2020). Thus, Lin et al. (2017) demonstrated that resveratrol is a potent anti-Middle East Respiratory Syndrome coronavirus (MERS-CoV) agent in vitro by down-regulating the apoptosis induced by MERS-CoV and decreasing the expression of nucleocapsid (N) protein essential for MERS-CoV replication (Lin et al., 2017). Other research carried out on Vero E6 cell culture showed that the derived stilbene protects against SARS-CoV-induced cytopathy (Li et al., 2006). In addition, Zhao et al. (2016), reported that resveratrol inhibited viral replication and mortality in ducklings infected with the duck enteritis virus. One more report by Zhao et al. (2017), always on the pseudorabies virus, which affects pigs causing fatal encephalitis and lung inflammation, evidenced that resveratrol inhibits intracellular viral proliferation by blocking the activity of IkB kinase; this enzyme is the key regulator in NF-κB activation. But despite the high antiviral potential of resveratrol, its oral bioavailability is low, which would constitute an apparent disadvantage. Nonetheless, Some researchers suggest that to improve its bioavailability, resveratrol can be combined in nanoparticle formulations or with modified beta-glucan in aqueous solutions (Baldassarre et al., 2020). In another example of reliability of the therapeutic effect of resveratrol against SARS-CoV-2, Cui et al. (2018), added resveratrol to the piglets’ diet for 21 days, and they found that resveratrol reduced both TNF-α levels and diarrhea due to rotavirus.
Besides all the health benefit effects listed above, resveratrol has adverse effects (Shaito et al., 2020). Some references have reported that resveratrol has hormetic effects, including pro-oxidant effects associated with high dose (Dai et al., 2007; Dei et al., 2009; Gadacha et al., 2009; Rocha et al., 2009; Guha et al., 2010; Posadino et al., 2019; Shaito et al., 2020). Moreover, resveratrol has been reported to have an immune toxic effect (Bolton & Dunlap, 2017).

Recent studies have shown that some bioactive compounds found in dietary fruits could be active in suppressing SARS-CoV infection, among which resveratrol is found (Lin et al., 2017; Wang et al., 2020b).

REFERENCES

Alhajj MS, Qasem MA, Al Hosn M, van de Veen W, Brüggen MC, O'Mahony L, Gao Y, Nadeau K, Posadino et al., 2019; Shaito et al., 2020). Moreover, resveratrol has been reported to have an immune toxic effect (Bolton & Dunlap, 2017).

CONCLUSION

This study shows that resveratrol would have the potential to reduce ARDS symptoms, both by suppressing the cytokine storm and severe inflammation caused by SARS-CoV-2, and by showing strong activity against various types of DNA and RNA viruses. Although the antiviral activity of resveratrol is known, the cell pathways leading to its protective activity in asthma have not yet been elucidated. Interestingly, some molecular pathways regulated by resveratrol, e.g., IFN-γ, TGF-β, NF-κB, TNF-α, IL-6, IL-12, IL-17, or IL-1β, also play an important role in the control of virus infection. Therefore, resveratrol can improve respiratory distress symptoms caused by covid-19 in patients with asthma.

REFERENCES

Alhajj MS, Qasem MA, Al Hosn M, van de Veen W, Brüggen MC, O'Mahony L, Gao Y, Nadeau K, Posadino et al., 2019; Shaito et al., 2020). Moreover, resveratrol has been reported to have an immune toxic effect (Bolton & Dunlap, 2017).

CONCLUSION

This study shows that resveratrol would have the potential to reduce ARDS symptoms, both by suppressing the cytokine storm and severe inflammation caused by SARS-CoV-2, and by showing strong activity against various types of DNA and RNA viruses. Although the antiviral activity of resveratrol is known, the cell pathways leading to its protective activity in asthma have not yet been elucidated. Interestingly, some molecular pathways regulated by resveratrol, e.g., IFN-γ, TGF-β, NF-κB, TNF-α, IL-6, IL-12, IL-17, or IL-1β, also play an important role in the control of virus infection. Therefore, resveratrol can improve respiratory distress symptoms caused by covid-19 in patients with asthma.

REFERENCES

André DM, Calixto MC, Sollon C, Alexandre EC, Leiria LO, Tobar N, Anhê GF, Antunes E. 2016. Therapy with resveratrol attenuates obesity-associated allergic airway inflammation in mice. Int Immunopharmacol 38: 298 - 305. https://doi.org/10.1016/j.intimp.2016.06.017

North East India, its extractive separation and antioxidant activity. *Ind Crops Prod* 95: 75 - 82. https://doi.org/10.1016/j.indcrop.2016.10.015

Dennis EA, Norris PC. 2015. Eicosanoid storm in infection and inflammation. *Nat Rev Immunol* 15: 511 - 523. https://doi.org/10.1038/nri3859

Duerr CU, Mccarthy CDA, Mindt BC, Rubio M, Pothlichet J, Eva MM, Gauchat JF, Qureshi ST, Mazer D, Messaoudi I, Malo D, Gamero AM, Vidal SM, King IL, Sarfati M, Fritz JH. 2016. Type I interferon restricts type 2 immunopathology through the regulation of group 2 innate lymphoid cells. *Nat Immunol* 17: 65 - 75. https://doi.org/10.1038/ni.3308

Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas / 476

evaluate healthcare interventions: explanation and elaboration. BMJ 339:
https://doi.org/10.1136/bmj.h2700

Powell RG, TePaske MR, Plattner RD, White JF, Clement SL. 1994. Isolation of resveratrol from Festuca versuta and evidence for the widespread occurrence of this stilbene in the poaceae. **Phytochemistry** 35: 335 - 338. https://doi.org/10.1016/S0031-9422(00)94759-9

Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas / 479

Takaoaka MJ. 1940. Of the phenolic substances of white hellebore (Veratrum grandiflorum Loc. fil.). J Faculty Sci Hokkaido Imperial Univ 3: 1 - 16.

Parlar et al. Resveratrol as an anti-asthmatic agent: could help against COVID-19?

